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Abstract

We show that skew-orthogonal functions, defined with respect to Jacobi weight
wa,b(x) = (1 − x)a(1 + x)b, a, b > −1, including the limiting cases of
Laguerre (wa(x) = xa e−x, a > −1) and Gaussian weight (w(x) = e−x2

),
satisfy three-term recursion relation in the quaternion space. From this, we
derive generalized Christoffel–Darboux (GCD) formulae for kernel functions
arising in the study of the corresponding orthogonal and symplectic ensembles
of random 2N × 2N matrices. Using the GCD formulae we calculate the level
densities and prove that in the bulk of the spectrum, under appropriate scaling,
the eigenvalue correlations are universal. We also provide evidence to show
that there exists a mapping between skew-orthogonal functions arising in the
study of orthogonal and symplectic ensembles of random matrices.

PACS numbers: 02.30.Gp, 05.45.Mt

1. Introduction

1.1. Random matrices

Universality of eigenvalue correlations for different random matrix ensembles and its
application in real physical systems has attracted both mathematicians and physicists in
the last few decades [1–5, 9–17]. From the mathematical point of view, the study of this
universal behavior of eigenvalue correlations for various ensembles of large random matrices
require (i) evaluation of certain kernel functions involving orthogonal (unitary ensemble),
skew-orthogonal (orthogonal and symplectic ensemble) and bi-orthogonal (unitary two-matrix
ensemble) polynomials, (ii) asymptotic analysis of these polynomials. The rich literature
available on orthogonal [9–21] and bi-orthogonal polynomials [22–26] corresponding to
different weights have contributed a lot in our understanding of unitary ensembles.
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For orthogonal and symplectic ensembles, the problem of evaluating the kernel functions
is removed by the Tracy–Widom formalism, where the kernel functions are expressed in
terms of that of the unitary ensemble, involving orthogonal polynomials [38–42]. Results for
orthogonal polynomials (OP) are then used.

The second and perhaps a more enriching method is to evaluate the kernel functions
directly in terms of skew-orthogonal polynomials/skew-orthogonal functions (SOP) and use
asymptotic properties of these functions [27]. For this, we need to develop the theory of SOP
[3–8, 28–32] so that we can have further insight into orthogonal and symplectic ensembles of
random matrices.

In this paper, we study statistical properties of orthogonal and symplectic ensembles of
random matrices with classical weight using SOP. To do so, we evaluate the kernel functions
(which we have termed generalized Christoffel–Darboux sum or GCD) for the corresponding
orthogonal and symplectic ensembles of random 2N × 2N matrices. As N → ∞, study of
these kernel functions require a knowledge of the asymptotic behavior of the corresponding
SOP. These can be derived by solving the Riemann–Hilbert problem [5, 45] for SOP. The other
(and perhaps easier) option is to obtain a finite term recursion relation between SOP and OP
and use known properties of the latter (also see [3, 4]) to obtain asymptotic results for SOP.
We use the second option.

OP satisfy a three-term recursion relation, irrespective of the weight function w(x)

w.r.t. which they are defined. However recursion relations satisfied by SOP depend on
the corresponding weight. This is because these functions, defined in the range [x1, x2],
show skew-orthonormality w.r.t. their derivatives (1.16). This brings into picture terms like
w′(x)/w(x) which gives rise to certain local behavior of the recursion relations. For example,
for SOP defined in the finite range [x1, x2], w′(x)/w(x) may have poles at the end points,
which have to be dealt with in the recursion relations. For SOP defined in the infinite range
[−∞,∞], this can increase the number of terms in the recursion relations.

An obvious consequence of the local behavior of recursion relations is that the GCD
formulae also depend on w(x). In this paper, we calculate the GCD sum corresponding
to Jacobi weight, including the limiting cases of associated Laguerre and Gaussian weight.
GCD formula for weight functions with polynomial potential has been derived in [5] and is
mentioned in this paper for completeness. In [3, 4, 28], the authors have found compact
expressions for SOP in terms of OP. In this paper, we use them and make further developments
of the asymptotic analysis of these SOP. Finally, using these asymptotic results in the GCD
formulae, we study the statistical properties of the corresponding random matrix ensembles
in the bulk of the spectrum.

We also observe certain duality property between the two families of SOP arising in
the study of orthogonal and symplectic ensembles. (In fact, this justifies further the use
of SOP to ordinary OP in studying these ensembles [9, 10, 33–41].) However, this can at
best be termed in physics literature as ‘experimental observations’. We do not have a clear
theoretical understanding of this duality. The answer perhaps lies in the existence of certain
ortho-symplectic group which shares such duality property. But the author’s knowledge in
this field is severely limited.

We consider ensembles of 2N -dimensional matrices H with probability distribution

Pβ,N(H) dH = 1

Zβ,N

exp[−[2 Tr u(H)]] dH, (1.1)

where the matrix function u(H) is defined by the power expansion of the function u(z). The
parameter β = 1, 2 and 4 corresponds to ensembles invariant under orthogonal, unitary and
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symplectic transformations. In this paper, we study β = 1 and 4 cases. The partition function
is given by

Zβ,N :=
∫

H∈M
(β)

2N

exp[−[2 Tr u(H)]] dH = (2N)!
2N−1∏
j=0

g
(β)

j , (1.2)

where M
(β)

2N is a set of all 2N × 2N real symmetric (β = 1) and quaternion real self-dual
(β = 4) matrices. dH is the standard Haar measure. g

(β)

j are normalization constants for SOP
[27] corresponding to β = 1 and 4.

1.2. Skew-orthogonal polynomials: relevance in orthogonal and symplectic ensembles

From the invariance of these ensembles under orthogonal (β = 1) and symplectic (β = 4)

transformation, joint probability of eigenvalues (x1, x2, . . . , x2N) is given by [28]

Pβ,N(x1, x2, . . . , x2N) = 1

ZβN

|�2N(x1, x2, . . . , x2N)|β
2N∏
j=1

w(xj ), (1.3)

where �2N(x1, x2, . . . , x2N) = ∏
j<k(xj − xk) is the Vandermonde determinant. The weight

function w(x) = exp[−u(x)] is a nonzero and non-negative function on the interval [a, b] and
have finite moments.

The n-point correlation of eigenvalues is given by

R(β)
n (x1, . . . , xn) = 2N !

(2N − n)!

∫
dxn+1 · · ·

∫
dx2NPβ,N(x1, x2, . . . , x2N), n = 1, 2, . . . .

(1.4)

To evaluate such integrals, the joint probability distribution Pβ,N(x1, x2, . . . , x2N) is written
in terms of quaternion determinants (i.e. determinant of a matrix, each of whose element is
a 2 × 2 quaternion) satisfying certain properties [29]. Finally, using Dyson–Mehta theorem
(page 152 of [29]), one can calculate (1.4). For example, the two-point function R

(β)

2 (x, y)

and the level density R
(β)

1 (x) is given by

R
(β)

2 (x, y) =
(

S
(β)

2N (x, y) D
(β)

2N (x, y)

I
(β)

2N (x, y) − δ1,βε(y − x) S
(β)

2N (y, x)

)
;

(1.5)
R

(β)

1 (x) := ρ(β)(x) = S
(β)

2N (x, x), ε(r) = |r|
2r

.

Here δ is the kronecker delta. In terms of SOP φ
(β)
n (x) and ψ

(β)
n (x), to be defined in (1.10)

and (1.15) respectively, they are expressed as

S
(β)

2N (x, y) :=
2N−1∑
j,k=0

Zj,kφ
(β)

j (x)ψ
(β)

k (y) = 	̂(β)(y)
∏
2N


(β)(x)

= −
̂(β)(x)
∏
2N

	(β)(y), (1.6)

D
(β)

2N (x, y) := −
2N−1∑
j,k=0

Zj,kφ
(β)

j (x)φ
(β)

k (y) = 
̂(β)(x)
∏
2N


(β)(y), (1.7)

I
(β)

2N (x, y) :=
2N−1∑
j,k=0

Zj,kψ
(β)

j (x)ψ
(β)

k (y) = −	̂(β)(x)
∏
2N

	(β)(y), (1.8)
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S
(β)

2N (y, x) = S†(β)

2N (x, y) = 
̂(β)(x)
∏
2N

	(β)(y), (1.9)

where

φ(β)
n (x) = 1√

g
(β)
n

π(β)
n (x)w(x), π(β)

n (x) =
n∑

k=0

c
(n,β)

k xk, β = 1, 4, (1.10)

are normalized SOP of order n.
Here,

∏
2N = diag(1, . . . , 1︸ ︷︷ ︸

2N

, 0, . . . , 0) is a diagonal matrix and 
(β)(x) and 	(β)(x) are

semi-infinite vectors


(β)(x) = (



(β)

0

t
(x) . . . 
(β)

n

t
(x) . . .

)t
, 
̂(β)(x) = −
(β)t (x)Z, (1.11)

	(β)(x) = (
	

(β)

0

t
(x) . . . 	(β)

n

t
(x) . . .

)t
, 	̂(β)(x) = −	(β)t (x)Z, (1.12)

with each entry a 2 × 1 matrix


(β)
n (x) =

(
φ

(β)

2n (x)

φ
(β)

2n+1(x)

)
, 
̂(β)

n (x) =
⎛⎝φ

(β)

2n+1(x)

−φ
(β)

2n (x)

⎞⎠t

(1.13)

(similar for 	
(β)
n (x) and 	̂

(β)
n (x)). The anti-symmetric block-diagonal matrix Z is given by

Z =
(

0 1
−1 0

)
� · · · � (1.14)

such that Z = −Zt and Z2 = −1.
For

	(4)
n (x) = 
′(4)

n (x), 	(1)
n (x) =

∫
R


(1)
n (y)ε(x − y) dy, n ∈ N, (1.15)

these polynomials satisfy skew-orthonormal relations w.r.t. the weight function w2(x),1(

(β)

n , 	̂(β)
m

) ≡
∫

R


(β)
n (x)	̂(β)

m (x) dx = δnm

(
1 0
0 1

)
, n,m ∈ N. (1.16)

Finally, from (1.6)–(1.8) we get

D
(1)
2N(x, y) = −∂S

(1)
2N(x, y)

∂y
, S

(1)
2N(x, y) = ∂I

(1)
2N (x, y)

∂y
, (1.17)

I
(4)
2N (x, y) = ∂S

(4)
2N(x, y)

∂x
, S

(4)
2N(x, y) = −∂D

(4)
2N(x, y)

∂x
. (1.18)

Thus a knowledge of the kernel function S
(β)

2N (x, y) is enough to calculate the correlation
function. In this paper, we will study the finite N and large N behavior of S

(β)

2N (x, y).
The outline of the paper is as follows. In section 2, we calculate GCD formulae for the

kernel function S
(β)

2N (x, y) (1.6), β = 1 and 4, corresponding to different weight. In section 3,
we discuss the idea of duality that exists between the two families of SOP arising in the study

1 To observe the dual property among the two families of polynomials π
(β)
n (x), β = 1, 4, we skew-orthonormalize

them w.r.t. w2(x) (as in 1.16) to set both the families of SOP on an equal footing. However to study the statistical
properties of symplectic ensembles only, this is not needed.
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of orthogonal and symplectic ensembles of random matrices. In section 4, we give a brief
summary of some of the relevant properties of classical OP which will be useful in our study of
the corresponding SOP. In section 5, we use results of section 2 to (i) obtain the level densities
(1.5) for Jacobi and associated Laguerre orthogonal ensembles, (ii) prove that in the bulk of
the spectrum, the kernel functions S

(β)

2N (x, y)
/
S

(β)

2N (x, x) and hence the unfolded correlation
functions for the above ensembles are stationary and universal. In section 6, we repeat the
same calculations for Jacobi symplectic and associated Laguerre symplectic ensembles2.

2. The generalized Christoffel Darboux sum

2.1. Recursion relations

For polynomials with weight function

w(x) = (x2 − x)a(x − x1)
b, x1, x2 ∈ R, (2.1)

skew-orthogonal in the finite interval [x1, x2], and having finite moments, evaluation of ψ(4)
n (x)

and φ(1)
n (x) will involve terms like w′(x)/w(x) which have poles at x1 and x2. Hence to obtain

recursion relations we expand [(x − x1)(x2 − x)
(β)(x)]
′
and [x(x − x1)(x2 − x)
(β)(x)]

′
in

terms of SOP 
(β)(x) (1.11) and introduce semi-infinite matrices P (β) and R(β) such that for
β = 4,

(x − x1)(x2 − x)(
(4)(x))
′ ≡ f (x)(
(4)(x))

′ = P (4)
(4)(x), (2.2)

x(x − x1)(x2 − x)(
(4)(x))
′ ≡ xf (x)(
(4)(x))

′ = R(4)
(4)(x). (2.3)

For β = 1, we get

(x − x1)(x2 − x)
(1)(x) ≡ f (x)
(1)(x) = P (1)	(1)(x), (2.4)

x(x − x1)(x2 − x)
(1)(x) ≡ xf (x)
(1)(x) = R(1)	(1)(x). (2.5)

Equations (2.4) and (2.5) are obtained by multiplying the above expansion by ε(y − x) and
integrating by parts.

In this context, the Jacobi weight function is defined in the interval [−1, 1] by

wa,b(x) = (1 − x)a(1 + x)b, a > −1, b > −1, (2.6)

where restrictions on a and b ensure that they have finite moments.
Associated Laguerre weight function is defined in the interval [0,∞] by

wa(x) = xa e−x, a > −1, (2.7)

where restriction on a ensures that they have finite moments.
Gaussian weight function is defined in the interval [−∞,∞] by

w(x) = e−x2
. (2.8)

From here on, we will concentrate on these classical weight functions and show that the
corresponding SOP satisfy three-term recursion relations in the 2 × 2 quaternion space.

2 For random matrix ensembles with polynomial potential, the special case of Gaussian ensemble (d = 1), which is
also one of the limiting case of Jacobi ensemble, has been worked out explicitly in [5] using GCD formula, and hence
not repeated in this paper.
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2.2. Recursion relations for SOP with classical weight

For classical weight, we expand [(f (x)
(β)(x)]
′

and [x(f (x)
(β)(x)]
′

in terms of 
(β)(x).
They satisfy the following recursion relations:

f (x)	(4)(x) = P (4)
(4)(x), xf (x)	(4)(x) = R(4)
(4)(x), (2.9)

f (x)
(1)(x) = P (1)	(1)(x), xf (x)
(1)(x) = R(1)	(1)(x), (2.10)

where P (β) and R(β) are semi-infinite tridiagonal quaternion matrices. The semi-infinite
vectors 
(β)(x) and 	(β)(x) are given in (1.11) and (1.12) respectively. Now, w′(x)/w(x)

and hence 	(4)(x) and 
(1)(x) has singularity at x ± 1 for Jacobi, and at x = 0 for associated
Laguerre. To remove them, we have

f (x) = (1 − x2), Jacobi (2.11)

= x, Associated Laguerre (2.12)

= 1, Gaussian (also true for any polynomial weight). (2.13)

In other words, SOP satisfy three-term recursion relation in the quaternion space and is given
by

f (x)	(4)
n (x) = P

(4)
n,n+1


(4)
n+1(x) + P(4)

n,n

(4)
n (x) + P

(4)
n,n−1


(4)
n−1(x), (2.14)

xf (x)	(4)
n (x) = R

(4)
n,n+1


(4)
n+1(x) + R(4)

n,n

(4)
n (x) + R

(4)
n,n−1


(4)
n−1(x). (2.15)

f (x)
(1)
n (x) = P

(1)
n,n+1	

(1)
n+1(x) + P(1)

n,n	
(1)
n (x) + P

(1)
n,n−1	

(1)
n−1(x), (2.16)

xf (x)
(1)
n (x) = R

(1)
n,n+1	

(1)
n+1(x) + R(1)

n,n	
(1)
n (x) + R

(1)
n,n−1	

(1)
n−1(x), (2.17)

where 

(β)
n (x) and 	

(β)
n (x) are given in (1.13) and P

(β)

j,k and R
(β)

j,k are 2 × 2 quaternions.
Equations (2.14)–(2.17) can be proved directly using the skew-orthogonal relation (1.16). We
leave it as an exercise. In this paper, we will give an alternative proof by showing that the
semi-infinite matrices P (β) and R(β) are tridiagonal (in the quaternion sense) and anti-self-dual.

In terms of the elements of the quaternion matrices, (2.14) and (2.15) can be written as

f (x)

(
ψ

(4)
2n (x)

ψ
(4)
2n+1(x)

)
=
(

0 0

P
(4)
2n+1,2n+2 0

)(
φ

(4)
2n+2(x)

φ
(4)
2n+3(x)

)
+

(
P

(4)
2n,2n P

(4)
2n,2n+1

P
(4)
2n+1,2n P

(4)
2n+1,2n+1

)(
φ

(4)
2n (x)

φ
(4)
2n+1(x)

)

+

(
0 0

P
(4)
2n+1,2n−2 0

)(
φ

(4)
2n−2(x)

φ
(4)
2n−1(x)

)
(2.18)

and

xf (x)

(
ψ

(4)
2n (x)

ψ
(4)
2n+1(x)

)
=
(

R
(4)
2n,2n+2 0

R
(4)
2n+1,2n+2 R

(4)
2n+1,2n+3

)(
φ

(4)
2n+2(x)

φ
(4)
2n+3(x)

)

+

(
R

(4)
2n,2n R

(4)
2n,2n+1

R
(4)
2n+1,2n R

(4)
2n+1,2n+1

)(
φ

(4)
2n (x)

φ
(4)
2n+1(x)

)

+

(
R

(4)
2n,2n−2 0

R
(4)
2n+1,2n−2 R

(4)
2n+1,2n−1

)(
φ

(4)
2n−2(x)

φ
(4)
2n−1(x)

)
. (2.19)

6
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For β = 1, we get similar relations, where 
(4) and 	(4) are replaced by 	(1) and 
(1)

respectively.
For the polynomial weight, the semi-infinite matrices P (β) and R(β) have d quaternion

bands above and below the diagonal [5]. Thus the Gaussian (d = 1) SOP, like the Jacobi and
associated Laguerre functions, satisfy three-term recursion in the quaternion space.

Note. Here, we would like to mention that unlike OP, the Jacobi matrix Q(β) coming from the
relation x
(β)(x) = Q(β)
(β)(x), β = 1, 4, holds little importance as they do not have finite
bands below the diagonal.

2.3. Proof

To prove that the SOP corresponding to classical weight satisfy three-term recursion in the
quaternion space, we will prove that the matrices P (4) and R(4) for Jacobi weight are anti-self-
dual. We use the scalar products∑

j

P
(4)
n,j Zj,n = (

(1 − x2)ψ(4)
n (x), ψ(4)

m (x)
) =

∑
j

P
(4)
m,jZj,n, (2.20)

∑
j

R
(4)
n,jZj,n = (

x(1 − x2)ψ(4)
n (x), ψ(4)

m (x)
) =

∑
j

R
(4)
m,jZj,n. (2.21)

Similarly, using
(
xψ(4)

n (x), ψ(4)
m (x)

)
and

(
x2ψ(4)

n (x), ψ(4)
m (x)

)
for associated Laguerre weight

and
(
ψ(4)

n (x), ψ(4)
m (x)

)
and

(
xψ(4)

n (x), ψ(4)
m (x)

)
for polynomial weight for β = 4 and replacing

ψ(4)(x) by φ(1)(x) for β = 1, we get

P (β) = −P (β)D, R(β) = −R(β)D, (2.22)

where dual of a matrix is defined as

AD := −ZAtZ. (2.23)

It is straightforward to see that P (β) and R(β) have finite bands (one in the case of SOP
defined w.r.t. the classical weight functions) above the diagonal. Equation (2.22) ensures that
they also have the same number of bands (where each entry is a 2 × 2 quaternion [29]) below
the diagonal. This completes the proof.

2.4. Generalized Christoffel Darboux sum

In this subsection, we generalize the results given in [5] to include GCD sum for both classical
weights as well as weight functions with polynomial potential.

With f (y) given in (2.11), we use (1.6) and (2.9) to get

f (y)S
(4)
2N(x, y) − f (x)S

(4)
2N(y, x) = f (y)

[

(4)t (x)

∏
2N

Z
∏
2N

	(4)(y)

]

+ f (x)

[
	(4)t (x)

∏
2N

Z
∏
2N


(4)(y)

]

=
[
−
(4)t (x)ZZ

∏
2N

Z
∏
2N

P (4)
(4)(y)

]

+

[

(4)t (x)ZZP (4)tZZ

∏
2N

Z
∏
2N


(4)(y)

]
7
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=
[
−
̂(4)(x)

∏
2N

P (4)
(4)(y)

]
+

[

̂(4)(x)P (4)

∏
2N


(4)(y)

]

= 
̂(4)(x)

[
P (4),

∏
2N

]

(4)(y). (2.24)

Similarly,

yf (y)S
(4)
2N(x, y) − xf (x)S

(4)
2N(y, x) = yf (y)

[

(4)t (x)

∏
2N

Z
∏
2N

	(4)(y)

]

+ xf (x)

[
	(4)t (x)

∏
2N

Z
∏
2N


(4)(y)

]

=
[
−
(4)t (x)ZZ

∏
2N

Z
∏
2N

R(4)
(4)(y)

]

+

[

(4)t (x)ZZR(4)tZZ

∏
2N

Z
∏
2N


(4)(y)

]

=
[
−
̂(4)(x)

∏
2N

R(4)
(4)(y)

]
+

[

̂(4)(x)R(4)

∏
2N


(4)(y)

]

= 
̂(4)(x)

[
R(4),

∏
2N

]

(4)(y). (2.25)

Combining the two, GCD formula for symplectic ensembles of random matrices with classical
weight is given by

S
(4)
2N(x, y) = 
̂(4)(x)[R

(4)
(x),

∏
2N ]
(4)(y)

f (y)(y − x)
, N � 1. (2.26)

For the corresponding orthogonal ensembles (β = 1), GCD formula is derived using
similar technique. From (1.6) and (2.10), we get

f (x)S
(1)
2N(x, y) − f (y)S

(1)
2N(y, x) = f (x)

[

(1)t (x)

∏
2N

Z
∏
2N

	(1)(y)

]

+ f (y)

[
	(1)t (x)

∏
2N

Z
∏
2N


(1)(y)

]

= 	̂(1)(x)

[
P (1),

∏
2N

]
	(1)(y), (2.27)

and

xf (x)S
(1)
2N(x, y) − yf (y)S

(1)
2N(y, x) = xf (x)

[

(1)t (x)

∏
2N

Z
∏
2N

	(1)(y)

]

+ yf (y)

[
	(1)t (x)

∏
2N

Z
∏
2N


(1)(y)

]
,

= 	̂(1)(x)

[
R(1),

∏
2N

]
	(1)(y). (2.28)
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Combining the two, the GCD formula for classical orthogonal ensembles is given by

S
(1)
2N(x, y) = 	̂(1)(x)

[
R

(1)
(y),

∏
2N

]
	(1)(y)

f (x)(x − y)
, N � 1. (2.29)

Here

R
(β)

(x) = R(β) − xP (β), β = 1, 4, (2.30)

is different for different weights.
For example, GCD matrix for the Jacobi symplectic ensemble (including the associated

Laguerre and Gaussian symplectic ensemble) has the following structure:


̂(4)(x)

[
R

(4)
(x),

∏
2N

]

(4)(y) =

⎛⎜⎜⎝
φ

(4)
1 (x)

−φ
(4)
0 (x)

...

⎞⎟⎟⎠
t

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0
...

... 0

0 0 0 −R
(4)
2N−2,2N 0 0

0 0 0 −R
(4)

2N−1,2N(x) −R
(4)
2N−1,2N+1 0

0 −R
(4)
2N−1,2N+1 0 0 0 0

0 R
(4)

2N−1,2N(x) −R
(4)
2N−2,2N 0 . . . 0

0 0 0 0 0 0

0 0 0
...

... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎝
φ

(4)
0 (y)

φ
(4)
1 (y)

...

⎞⎟⎟⎠ ,

= R
(4)
2N−2,2N

[
φ

(4)
2N(x)φ

(4)
2N−1(y) − φ

(4)
2N(y)φ

(4)
2N−1(x)

]
+ R

(4)
2N−1,2N+1

[
φ

(4)
2N−2(x)φ

(4)
2N+1(y) − φ

(4)
2N−2(y)φ

(4)
2N+1(x)

]
+
(
R

(4)
2N−1,2N − xP

(4)
2N−1,2N

)[
φ

(4)
2N−2(x)φ

(4)
2N(y) − φ

(4)
2N−2(y)φ

(4)
2N(x)

]
. (2.31)

Similarly, for classical orthogonal ensemble, the GCD matrix has the following structure:

	̂(1)(x)

[
R

(1)
(y),

∏
2N

]
	(1)(y)

= R
(1)
2N−2,2N

[
ψ

(1)
2N (x)ψ

(1)
2N−1(y) − ψ

(1)
2N (y)ψ

(1)
2N−1(x)

]
+ R

(1)
2N−1,2N+1

[
ψ

(1)
2N−2(x)ψ

(1)
2N+1(y) − ψ

(1)
2N−2(y)ψ

(1)
2N+1(x)

]
+
(
R

(1)
2N−1,2N − yP

(1)
2N−1,2N

)[
ψ

(1)
2N−2(x)ψ

(1)
2N (y) − ψ

(1)
2N−2(y)ψ

(1)
2N (x)

]
. (2.32)

3. Duality

Duality between the two families of SOP arising in the study of orthogonal (β = 1) and
symplectic (β = 4) ensembles of random matrices was predicted in [5, 6]. In this section,
we show the existence of such duality between the two families of SOP corresponding to
classical weight, i.e. 
(4)(x) �→ 	(1)(x) and 	(4)(x) �→ 
(1)(x). For this, we derive

9
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recursion relations between the two families of SOP with their corresponding OP. Apart from
demonstrating duality, this technique simplifies the derivation of asymptotic results of the
SOP.

We expand functions 
(4)
m (x) and 	(1)

m (x),m � 1, skew-orthogonal in the range [x1, x2],
in a suitable basis of OP such that:

(i) their derivatives are continuous in the range [x1, x2] and vanish at the end-points.
(ii) φ(4)

m (x) and
(
ψ(1)

m (x)
)′ ≡ φ(1)

m (x) can be written as w(x)π
(β)
m (x).

(iii) 
(4)
m (x) and 	(1)

m (x) are skew-orthonormal in the range [x1, x2] w.r.t. their derivatives.

We expand Jacobi SOP φ(4)
m (x) and ψ(1)

m (x) in terms of Jacobi OP P
2a+1,2b+1
j (x),

orthogonal w.r.t. the weight function w2a+1,2b+1(x) (see equation (2.6)). For associated
Laguerre SOP, we expand in terms of L2a+1

j (x), orthogonal w.r.t. the weight function w2a+1(x)

(see equation (2.7)) while for Gaussian SOP, the basis chosen is Hj(x) orthogonal w.r.t. the
weight e−x2

. The choice of such basis ensures that conditions (i)–(iii) are satisfied.

3.1. Jacobi SOP

Jacobi SOP corresponding to orthogonal and symplectic ensembles are given below. We see
that there exists a relation between ψ(1)

m (x) and φ(4)
m (x) and their derivatives. We will use the

following identities:

(1 − x2)wa,b(x) = wa+1,b+1(x), wa,b(x)wa+1,b+1(x) = w2a+1,2b+1(x). (3.1)

For β = 1, with 
(1)
m (x) and 	(1)

m (x) satisfying conditions (i)–(iii), we have for m � 1,(
g

(1)
2m

)1/2
ψ

(1)
2m+1(x) = wa+1,b+1(x)P

2a+1,2b+1
2m (x), (3.2)(

g
(1)
2m

)1/2
φ

(1)
2m+1(x) = wa,b(x)

[
A2m+1P

2a+1,2b+1
2m+1 (x) − B2m−1P

2a+1,2b+1
2m−1 (x)

]
, (3.3)(

g
(1)
2m

)1/2
ψ

(1)
2m(x) = wa+1,b+1(x)

A2m

P
2a+1,2b+1
2m−1 (x) + γ

(2m)
2m−2ψ

(1)
2m−2(x), (3.4)

(
g

(1)
2m

)1/2
φ

(1)
2m(x) = wa,b(x)P

2a+1,2b+1
2m (x), (3.5)

with
(
g

(1)
0

)1/2
ψ

(1)
0 (x) = ∫

ε(x − y)wa,b(y) dy and

g
(1)
2m = g

(1)
2m+1 = h

2a+1,2b+1
2m , m = 0, 1, . . . . (3.6)

For β = 4, with 
(4)
m (x) and 	(4)

m (x) satisfying conditions (i)–(iii), we have for m � 1,(
g

(4)
2m

)1/2
φ

(4)
2m+1(x) = wa+1,b+1(x)P

2a+1,2b+1
2m−1 (x), (3.7)(

g
(4)
2m

)1/2
ψ

(4)
2m+1(x) = wa,b(x)

[
A2mP

2a+1,2b+1
2m (x) − B2m−2P

2a+1,2b+1
2m−2 (x)

]
, (3.8)(

g
(4)
2m

)1/2
φ

(4)
2m(x) = −wa+1,b+1(x)

A2m−1
P

2a+1,2b+1
2m−2 (x) + γ

(2m−1)
2m−3 φ

(4)
2m−2(x), (3.9)

(
g

(4)
2m

)1/2
ψ

(4)
2m(x) = −wa,b(x)P

2a+1,2b+1
2m−1 (x), (3.10)

with

g
(4)
2m = g

(4)
2m+1 = h

2a+1,2b+1
2m−1 , m = 1, 2, . . . , (3.11)

10



J. Phys. A: Math. Theor. 41 (2008) 435204 S Ghosh

where

γ
(j)

j−2 ≡ γj = (j + 2a + 2)(j + 2b + 2)

(j + 2)(j + 2a + 2b + 4)
,

(3.12)
Aj = −j (j + 2a + 2b + 2)

(2j + 2a + 2b + 1)
, Bj = − (j + 2a + 2)(j + 2b + 2)

(2j + 2a + 2b + 5)
,

Bj−1

Aj

h
2a+1,2b+1
j−1 = h

2a+1,2b+1
j , B−l = 0, l = 1, 2, . . . . (3.13)

φ
(4)
0 (x) and φ

(4)
1 (x) can be calculated using (6.1) and Gram–Schmidt method for SOP. Here

we note that SOP for β = 4 is lower than that of β = 1 by an order 1.

3.2. Associated Laguerre SOP

Associated Laguerre ensembles of random matrices can and does play a significant role in
describing real physical systems [42]. There exists a simple duality relation between the SOP
	(1)

m (x) and 
(4)
m (x), their derivatives and the normalization constant for m � 1,

	(1)
m (x) = −σ3


(4)
m (x); 
(1)

m (x) = −σ3	
(4)
m (x);

(3.14)

g(4)
m = g(1)

m , where σ3 =
(

1 0
0 −1

)
is the Pauli matrix3.

We now present the results for the SOP corresponding to associated Laguerre weight. We
use

22a+1wa(x)wa+1(x) = w2a+1(2x), wa+1(x) = xwa(x), (3.15)

the latter vanishing at x = 0 for all a > −1.
For β = 1, with

(
g(1)

m

)1/2

(1)

m (x) = wa(x)π(1)
m (x), we have for m � 1,(

g
(1)
2m+1

)1/2
ψ

(1)
2m+1(x) = 2a+3/2wa+1(x)L2a+1

2m (2x) (3.16)

(
g

(1)
2m+1

)1/2
φ

(1)
2m+1(x) = 2a+1/2wa(x)

[
AL

2m+1L
2a+1
2m+1(2x) − BL

2m−1L
2a+1
2m−1(2x)

]
, BL

−1 = 0,

(3.17)(
g

(1)
2m

)1/2
ψ

(1)
2m(x) = 2a+3/2 wa+1(x)

AL
2m

L2a+1
2m−1(x) + γ

(2m)
2m−2ψ

(1)
2m−2(x), m �= 0, (3.18)

(
g

(1)
2m

)1/2
φ

(1)
2m(x) = 2a+1/2wa(x)L2a+1

2m (2x), (3.19)

g
(1)
2m = g

(1)
2m+1 = h2a+1

2m , m = 0, 1, . . . , (3.20)

where,
(
g

(1)
0

)1/2
ψ

(1)
0 (x) = 2a+1/2

∫∞
0 ε(x − y)wa(y) dy.

For β = 4, with
(
g(4)

m

)1/2

(4)

m (x) = wa(x)π(4)
m (x), we have(

g
(4)
2m+1

)1/2
φ

(4)
2m+1(x) = 2a+3/2wa+1(x)L2a+1

2m (2x) (3.21)(
g

(4)
2m+1

)1/2
ψ

(4)
2m+1(x) = 2a+1/2wa(x)

[
AL

2m+1L
2a+1
2m+1(2x) − BL

2m−1L
2a+1
2m−1(2x)

]
(3.22)

3 Using (3.14) in (1.2) we can see that the partition functions corresponding to Laguerre weight also share a duality
relation.
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g

(4)
2m

)1/2
φ

(4)
2m(x) = −2a+3/2 wa+1(x)

AL
2m

L2a+1
2m−1(2x) + γ

(2m−1)
2m−3 φ

(4)
2m−2(x), m �= 0, (3.23)

(
g

(4)
2m

)1/2
ψ

(4)
2m(x) = −2a+1/2wa(x)L2a+1

2m (2x) (3.24)

g
(4)
2m = g

(4)
2m+1 = h2a+1

2m , m = 0, 1, . . . , (3.25)

where
(
g

(4)
0

)1/2
φ

(4)
0 (x) ∝ wa(x).

Here γ
(j)

j−2 ≡ γ L
j , AL

j and BL
j are given by

γ L
j = (j + 2a + 2)

(j + 2)
, AL

j = j, BL
j = j + 2a + 2, (3.26)

BL
j−1

AL
j

h2a+1
j−1 = h2a+1

j , j � 1. (3.27)

Here, the identity

d

dx

{
wa+1(x)L

(2a+1)
j (2x)

} = 1

2
wa(x)

{
AL

j+1L
(2a+1)
j+1 (2x) − BL

j−1L
(2a+1)
j−1 (2x)

}
(3.28)

is used to derive (3.16) and (3.18) from (3.17) and (3.19) respectively.

3.3. Gaussian SOP

For Gaussian weight, with w(x) = e−x2/2 and β = 1, there exists a duality relation between
the SOP 	(1)

m (x) and 
(4)
m (x) and their derivatives for m � 1, and is given by(

g
(1)
2m+1

)1/2
ψ

(1)
2m+1(x) = w(x)H2m(x) (3.29)(

g
(1)
2m+1

)1/2
φ

(1)
2m+1(x) = w(x)[−(1/2)H2m+1(x) + 2mH2m−1(x)] (3.30)(

g
(1)
2m

)1/2
ψ

(1)
2m(x) = −2w(x)H2m−1(x) + 2(2m − 1)ψ

(1)
2m−2(x), m �= 0. (3.31)(

g
(1)
2m

)1/2
φ

(1)
2m(x) = w(x)H2m(x) (3.32)

g
(1)
2m = g

(1)
2m+1 = h2m, m = 0, 1, . . . , (3.33)

with
(
g

(1)
0

)1/2
ψ

(1)
0 (x) = ∫∞

−∞ ε(x − y)w(y) dy and Hj(x) the ordinary Hermite polynomials.
For β = 4, we have(

g
(4)
2m+1

)1/2
φ

(4)
2m+1(x) = w(x)H2m+1(x) (3.34)(

g
(4)
2m+1

)1/2
ψ

(4)
2m+1(x) = w(x)[−(1/2)H2m+2(x) + (2m + 1)H2m(x)] (3.35)(

g
(4)
2m

)1/2
φ

(4)
2m(x) = 2w(x)H2m(x) + 4mφ

(4)
2m−2(x) (3.36)(

g
(4)
2m

)1/2
ψ

(4)
2m(x) = −w(x)H2m+1(x) (3.37)

g
(4)
2m = g

(4)
2m+1 = h2m+1, m = 0, 1, . . . . (3.38)

Thus for the Gaussian weight, SOP for β = 4 is higher than that of β = 1 by an order 1. This
is exactly the opposite of what we saw for Jacobi SOP.
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3.4. Proof

The Jacobi SOP φ
(4)
j (x) and ψ

(1)
j (x) can be written as

(
g

(4)
j

)1/2
φ

(4)
j (x) = γ

(j−1)

j−1 wa+1,b+1P
2a+1,2b+1
j−2 (x) +

j−1∑
k=0

γ
(j−1)

k−1

(
g

(4)
k

)1/2
φ

(4)
k (x),

(3.39)
j � 2, γ

(j−1)

j−1 �= 0,

(
g

(1)
j

)1/2
ψ

(1)
j (x) = γ

(j)

j wa+1,b+1P
2a+1,2b+1
j−1 (x) +

j−1∑
k=0

γ
(j)

k

(
g

(1)
k

)1/2
ψ

(1)
k (x),

(3.40)
j � 1, γ

(j)

j �= 0,

such that they satisfy conditions (i)–(iii). For example, wa+1,b+1(x) is used instead of wa,b(x)

in order to satisfy condition (i). The order of the OP are fixed by (ii), while (iii) fixes γ
(j)

k .
Differentiating and using the identity

d

dx

{
wa+1,b+1(x)P

2a+1,2b+1
j (x)

} = wa,b(x)
{
Aj+1P

2a+1,2b+1
j+1 (x) − Bj−1P

2a+1,2b+1
j−1 (x)

}
, (3.41)

we get(
g

(4)
j

)1/2
ψ

(4)
j (x) = γ

(j−1)

j−1 wa,b

[
Aj−1P

2a+1,2b+1
j−1 (x) − Bj−3P

2a+1,2b+1
j−3 (x)

]
+

j−1∑
k=0

γ
(j−1)

k−1

(
g

(4)
k

)1/2
ψ

(4)
k (x) (3.42)

(
g

(1)
j

)1/2
φ

(1)
j (x) = γ

(j)

j wa,b

[
AjP

2a+1,2b+1
j (x) − Bj−2P

2a+1,2b+1
j−2 (x)

]
+

j−1∑
k=0

γ
(j)

k

(
g

(1)
k

)1/2
φ

(1)
k (x). (3.43)

In this paper we will give the proof for β = 4. The proof for β = 1 follows the same line
of logic and can be found in [3, 4].

Using (3.1) and orthonormality of P
2a+1,2b+1
j (x) w.r.t. the weight function w2a+1,2b+1(x),

the scalar products(
φ

(4)
2m(x), ψ

(4)
2m−2k(x)

) = 0, 
⇒ γ
(2m−1)
2m−2k = 0, k = 1, 2, . . . . (3.44)

We also have(
φ

(4)
2m(x), ψ

(4)
2m−2k+1(x)

) = 0, 
⇒ γ
(2m−1)
2m−2k−1 = 0, k = 2, 3, . . . , (3.45)(

φ
(4)
2m+1(x), ψ

(4)
2m−2k(x)

) = 0, 
⇒ γ
(2m)
2m−2k = 0, k = 1, 2, . . . , (3.46)(

φ
(4)
2m+1(x), ψ

(4)
2m−2k+1(x)

) = 0, 
⇒ γ
(2m)
2m−2k−1 = 0, k = 1, 2, . . . . (3.47)

Since odd SOP is arbitrary to the addition of any multiple of the lower even SOP, we set
γ

(2m)
2m−1 = 0. Choosing γ

(2m−1)
2m−1 = − 1

A2m−1
and γ

(2m)
2m = 1, we get

g
(4)
2m = g

(4)
2m+1 = h

2a+1,2b+1
2m−1 . (3.48)
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Here we have used (3.13). Finally,(
ψ

(4)
2m(x), φ

(4)
2m−1(x)

) = 0,
⇒ γ
(2m−1)
2m−3 = B2m−3

A2m−1
, m � 2. (3.49)

Thus we get (3.7)–(3.10).
To prove (3.21)–(3.24), we start with the expansion

(
g

(4)
j

)1/2
φ

(4)
j (x) = γ

(j−1)

j−1 2a+3/2wa+1(x)L2a+1
j−1 (2x) +

j−1∑
k=0

γ
(j−1)

k−1

(
g

(4)
k

)1/2
φ

(4)
k (x),

j � 1, γ
(j−1)

j−1 �= 0, (3.50)

(
g

(1)
j

)1/2
ψ

(1)
j (x) = γ

(j)

j 2a+3/2wa+1(x)L2a+1
j−1 (2x) +

j−1∑
k=0

γ
(j)

k

(
g

(1)
k

)1/2
ψ

(1)
k (x),

j � 1, γ
(j)

j �= 0. (3.51)

Using (3.28), we get ψ
(4)
j (x) and φ

(1)
j (x). Finally, we follow the same procedure and use

(3.26)–(3.27) to obtain (3.21)–(3.25).
For Gaussian SOP, we expand

(
g

(4)
j

)1/2
φ

(4)
j (x) = γ

(j−1)

j−1 w(x)Hj (x) +
j−1∑
k=0

γ
(j−1)

k−1

(
g

(4)
k

)1/2
φ

(4)
k (x),

j = 0, 1, . . . , γ
(j−1)

j−1 �= 0, (3.52)

(
g

(1)
j

)1/2
ψ

(1)
j (x) = γ

(j)

j w(x)Hj−1(x) +
j−1∑
k=0

γ
(j)

k

(
g

(1)
k

)1/2
ψ

(1)
k (x),

j � 1, γ
(j)

j �= 0, (3.53)

and use the relation

d

dx
(e−x2/2Hj(x)) = e−x2/2(− 1

2Hj+1(x) + jHj−1(x)
)

(3.54)

to prove (3.34)–(3.37).

4. Classical orthogonal polynomials and some relevant formula

Orthogonal polynomials Pj (x) of order j , associated with weight function w(x) in the interval
[x1, x2] is defined as [19]∫ x2

x1

Pj (x)Pk(x)w(x) dx = hjδj,k, Pj (x) =
j∑

l=0

k
(j)

l xl, j, k, l ∈ N, (4.1)

where hj is the normalization constant and k
(j)

j is the leading coefficient. They satisfy three-
term recursion relation

xPj (x) = Qj,j+1Pj+1(x) + Qj,jPj (x) + Qj,j−1Pj−1(x), j = 0, 1, . . . , (4.2)

where Qj,k is the recursion coefficient.
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For classical weight functions (2.6)–(2.8), defined in the interval [x1, x2], we have [19]
the following table:

Jacobi weight: Associated Laguerre Gaussian weight:
[−1, 1] weight: [0,∞] [−∞,∞]

P0(x) 1 1 1

P1(x) 1
2 (a + b + 2)x + 1

2 (a − b) −x + a + 1 2x

(hj ) h
a,b
j =

(
2a+b+1

(2j+a+b+1)
�(j+a+1)�(j+b+1)
�(j+1)�(j+a+b+1)

)
ha

j = �(j+a+1)
j ! hj = π1/22j j !

k
(j)

j k
a,b
j = 1

2j

(
2j+a+b

j

)
. ka

j = (−1)j

j ! 2j

Qj−1,j
2j (j+a+b)

(2j+a+b)(2j+a+b−1)
−j 1/2

Qj−1,j−1
(b2−a2)

(2j+a+b)(2j+a+b−2)
2j + a − 1 0

Qj−1,j−2
2(j+a−1)(j+b−1)

(2j+a+b−1)(2j+a+b−2)
−j + a − 1 j − 1

4.1. Asymptotic formula

Here we give a brief summary of the asymptotic results [19] of OP with classical weight which
will be useful in our analysis of the corresponding SOP.

Jacobi polynomial P
(a,b)
j (x), for large j , arbitrary real a, b and fixed positive number ε,

is written as

x = cos θ, ε � θ � π − ε,(
h

a,b
j

)−1/2
(wa,b(x))1/2P

(a,b)
j (x) (4.3)

=
√

2

π sin θ
cos

[(
j +

a + b + 1

2

)
θ −

(
a +

1

2

)
π

2

]
+ O(j−1),

where we have used [19] and h
a,b
j � 2(a+b)j−1.

Associated Laguerre polynomial La
j (x), for large j , has formula of the Plancherel–Rotach

type [19] given below. For ‘a’ arbitrary and real, ε a fixed positive number, we have for

x = (4j + 2a + 2) cos2 θ, ε � θ � π/2 − εj− 1
2 ,

e−x/2L
(a)
j (x) = (−1)j√

2πj sin θ cos θ

(
j

x

)a/2 {
sin

[
(j + (a + 1)/2)(sin 2θ − 2θ) +

3π

4

]}
(4.4)

+ (jx)−
1
2 O(1),

where h
(a)
j � ja . Unlike the Jacobi case, for given x, θ depends on j ; for example

θj − θj∓1 � ±(2j tan θj )
−1. Then with θ ≡ θj , we can also write

e−x/2L
(a)
j∓�j (x) = (−1)j−1

√
2πj sin θ cos θ

(
j

x

)a/2

×
{

sin

[
(j + (a + 1)/2)(sin 2θ − 2θ) ± 2θ�j +

3π

4

]}
+ (jx)−

1
2 O(1). (4.5)

Equation (4.5) will be useful in deriving the asymptotic formulae for SOP.
Finally, Hermite polynomial Hj(x), for large j , has formula of the Plancherel–Rotach

type given below. For ε a fixed positive number, we have

15
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x = (2j + 1)
1
2 cos θ, ε � θ � π − ε,

(4.6)

e−x2/2Hj(x) = (hj )
1/2

√
π sin θ

(
2

j

)1/4

sin

[
(j/2 + 1/4)(sin 2θ − 2θ) +

3π

4

]
+ O(j−1).

Unlike the Jacobi case, for given x, θ depends on j ; for example θj − θj∓1 � ±(2j tan θj )
−1.

Then with θ ≡ θj , we can also write

e−x2/2Hj∓1(x) = (hj∓1)
1/2

√
π sin θ

(
2

j

)1/4

sin

[
(j/2 + 1/4)(sin 2θ − 2θ) ± θ +

3π

4

]
+ O(j−1),

(4.7)

where we have used again θj − θj∓1 � ±(2j tan θj )
−1.

5. Universality for orthogonal ensembles

In this section, we use GCD formula for orthogonal ensembles of random matrices (2.32)
along with the asymptotic results of SOP [3, 4] to prove that with proper scaling, the kernel
function

(
S

(1)
2N(x, y)

/
S

(1)
2N(x, x)

)
and hence the correlation function for Jacobi orthogonal and

associated Laguerre orthogonal ensemble is stationary and universal.

5.1. Jacobi SOP

The asymptotic results for the SOP are derived using (4.3) in (3.2)–(3.5). Here, Aj ≈ Bj ≈
−j/2 and γj ≈ 1 for large j . For

x = cos θ, ε � θ � π − ε,
(5.1)

ψ
(1)
2m+1(x) =

√
2 sin θ

π
cos

[(
2m + a + b +

3

2

)
θ −

(
2a +

3

2

)
π

2

]
+ O(2m)−1,

ψ
(1)
2m(x) = − 1

m
√

2π sin θ

[
sin

[(
2m + a + b +

3

2

)
θ −

(
2a +

3

2

)
π

2

]
+ O(1) + O(2m)−1

]
.

(5.2)

φ
(1)
2m+1(x) = 2m

√
2

π sin θ

[
sin

[(
2m + a + b +

3

2

)
θ −

(
2a +

3

2

)
π

2

]
+ O(2m)−1

]
, (5.3)

φ
(1)
2m(x) =

√
2

π sin3 θ
cos

[(
2m + a + b +

3

2

)
θ −

(
2a +

3

2

)
π

2

]
+ O(2m)−1. (5.4)

Equations (5.1), (5.3) and (5.4) are obtained by using (4.3) in (3.2), (3.3) and (3.5).
Equation (5.2) is obtained by partial integration of (5.4). Here, we note that by directly
differentiating ψ(1)(x), we can get φ(1)(x) to the leading order, thereby confirming our result.

5.2. Universality in Jacobi orthogonal ensemble

In this subsection, we calculate the level density of Jacobi orthogonal ensemble and show that in
the bulk of the spectrum, the scaled or ‘unfolded’ [28] kernel function

(
S

(1)
2N(x, y)

/
S

(4)
2N(x, x)

)
is stationary and universal.
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To study the kernel function (2.32), we calculate P
(1)
2N−1,2N,R

(1)
2N−1,2N+1, R

(1)
2N−1,2N,

R
(1)
2N−2,2N . We expand

(1 − x2)φ
(1)
2m+1(x) =

2m+2∑
j=2m−2

P
(1)
2m+1,jψ

(1)
j (x), (5.5)

x(1 − x2)φ
(1)
2m+1 =

2m+3∑
j=2m−2

R
(1)
2m+1,jψ

(1)
j (x), x(1 − x2)φ

(1)
2m(x) =

2m+2∑
2m−2

R
(1)
2m,jψ

(1)
j (x).

(5.6)

We get

P
(1)
2m+1,2m+2 =

√√√√g
(1)
2m+2

g
(1)
2m

(2m + 1)(2m + 2)(2m + 2a + 2b + 3)(2m + 2a + 2b + 4)

(4m + 2a + 2b + 3)(4m + 2a + 2b + 5)
, (5.7)

R
(1)
2m+1,2m+3 = −2

√√√√g
(1)
2m+2

g
(1)
2m

(2m + 1)(2m + 2)(2m + 2a + 2b + 3)(2m + 2a + 2b + 4)

(4m + 2a + 2b + 3)(4m + 2a + 2b + 5)(4m + 2a + 2b + 6)
, (5.8)

R
(1)
2m+1,2m+2

=
√√√√g

(1)
2m + 2

g
(1)
2m

[(2b + 1)2 − (2a + 1)2](2m + 1)(2m + 2)(2m + 2a + 2b + 3)(2m + 2a + 2b + 4)

(4m + 2a + 2b + 3)(4m + 2a + 2b + 4)(4m + 2a + 2b + 5)(4m + 2a + 2b + 6)
,

= 0, for a = b, (5.9)

R
(1)
2m,2m+2 = −2

√√√√g
(1)
2m+2

g
(1)
2m

(2m + 1)(2m + 2)(2m + 2a + 2b + 3)(2m + 2a + 2b + 4)

(4m + 2a + 2b + 3)(4m + 2a + 2b + 4)(4m + 2a + 2b + 5)
. (5.10)

For m = N − 1, large N, we have
(
g

(4)
2N

/
g

(4)
2N−2

) � 1 and

P
(1)
2N−1,2N ∼ N2 + O(N),

R
(1)
2N−1,2N+1 ∼ −N

2
+ O(1), R

(1)
2N−1,2N ∼ (b − a)O(1), R

(1)
2N−2,2N ∼ −N

2
+ O(1).

(5.11)

Finally using (5.1) and (5.2), defined in the θ interval [ε, π − ε], and (5.11) in the GCD
formula (2.32), we get for

x = cos θ, y = x + �x = cos(θ + �θ), x − y � �θ sin θ,

(x − y)(1 − x2)S
(1)
2N(x, y) = R

(1)
2N−2,2N

[
ψ

(1)
2N (x)ψ

(1)
2N−1(y) − ψ

(1)
2N (y)ψ

(1)
2N−1(x)

]
+ R

(1)
2N−1,2N+1

[
ψ

(1)
2N−2(x)ψ

(1)
2N+1(y) − ψ

(1)
2N−2(y)ψ

(1)
2N+1(x)

]
+
(
R

(1)
2N−1,2N − xP

(1)
2N−1,2N

)[
ψ

(1)
2N−2(x)ψ

(1)
2N (y) − ψ

(1)
2N−2(y)ψ

(1)
2N (x)

]
= 1

2π
[sin(f2N(θ)) cos(f2N−2(θ + �θ)) − sin(f2N(θ + �θ)) cos(f2N−2(θ))]

+
1

2π
[sin(f2N−2(θ)) cos(f2N(θ + �θ)) − sin(f2N−2(θ + �θ)) cos(f2N(θ))]

− cos θ

2π sin θ
[sin(f2N−2(θ)) sin(f2N(θ + �θ))

− sin(f2N−2(θ + �θ)) sin(f2N(θ))],
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where, in the second step, we have dropped O(1/N2) term. Thus we get

(x − y)(1 − x2)S
(1)
2N(x, y) = 1

2π
[sin[f2N(θ) − (f2N−2(θ + �θ)]

− sin[f2N−2(θ) − f2N(θ + �θ)]] − cos θ sin(2θ)

2π sin θ
[sin[�θf ′

2N(θ)]]

= − 1

2π
[sin[�θf ′

2N(θ) − 2θ ] + sin[�θf ′
2N(θ) + 2θ ]

+
cos θ sin(2θ)

2π sin θ
[sin[�θf ′

2N(θ)]]

� − 1

π
sin[2N�θ ][cos(2θ) − cos2 θ ], (5.12)

which gives us finally

S
(1)
2N(x, y) = sin(2N�θ)

π�θ sin θ
, (5.13)

= sin(2N(1 − x2)
−1/2

�x)

π�x
, |x| < 1. (5.14)

With x → y, we get the level density ρ(x)

S
(1)
2N(x, x) := ρ(x) = 2N

π
√

1 − x2
, |x| < 1. (5.15)

With �x → 0, i.e. in the bulk of the spectrum, we get the ‘universal’ sine-kernel

S
(1)
2N(x, y)

S
(1)
2N(x, x)

= sin πr

πr
, r = ρ(x)�x. (5.16)

5.3. Associated Laguerre SOP

To obtain the asymptotic properties of associated Laguerre SOP, we use the relations
2a+1/2√xwa(x) = √

w2a+1(2x) and 2a+1/2wa+1(x) = √
x
√

w2a+1(2x). Replacing this in
(3.16)–(3.19) and using (4.4) we get the asymptotic formula.

For arbitrary a and ε a fixed positive number,

2x = (8m + 4a + 4) cos2 θ, ε � θ � π/2 − εm−1/2, θ ≡ θ2m,

(5.17)

φ
(1)
2m(x) = 1

4m
√

π sin θ cos3 θ

[
sin(f2m(θ)) +

O(1)√
2mx

]
,

ψ
(1)
2m+1(x) = 2√

π tan θ

[
sin(f2m(θ)) +

O(1)√
2mx

]
, (5.18)

ψ
(1)
2m(x) = − 1

4m
√

π sin3 θ cos θ

[
cos(f2m(θ)) + O(1) +

O(1)√
2mx

]
, (5.19)

φ
(1)
2m+1(x) = 2

√
tan θ

π

[
cos(f2m(θ)) +

O(1)√
2mx

]
, (5.20)

with

φ
(1)
2m±2(x) = 1

4m
√

π sin θ cos3 θ

[
sin(f2m(θ) ∓ 4θ) +

O(1)√
2mx

]
. (5.21)

Similar relations hold for (5.18)–(5.20) as m → m ± 1. Here

f2m(θ) = (2m + a + 1)(sin 2θ − 2θ) +
3π

4
. (5.22)
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5.4. Universality in associated Laguerre orthogonal ensemble

In this subsection, we calculate the level density of associated Laguerre orthogonal ensemble
and show that in the bulk of the spectrum, the scaled or ‘unfolded’ [28] kernel function(
S

(1)
2N(x, y)

/
S

(1)
2N(x, x)

)
is stationary and universal.

To calculate the kernel function (2.32), we need R
(1)
2N−1,2N+1, R

(1)
2N−1,2N,R

(1)
2N−2,2N and

P
(1)
2N−1,2N . For this, we expand

xφ
(1)
2m+1(x) =

2m+2∑
j=2m−2

P
(1)
2m+1,jψ

(1)
j (x), (5.23)

x2φ
(1)
2m(x) =

2m+2∑
j=2m−2

R
(1)
2m,jψ

(1)
j (x), x2φ

(1)
2m+1(x) =

2m+3∑
j=2m−2

R
(1)
2m+1,jψ

(1)
j (x), (5.24)

Using (3.17) in (5.23), we get

P
(1)
2m+1,2m+2 = 1

2

√√√√g
(1)
2m+2

g
(1)
2m

(2m + 1)(2m + 2). (5.25)

Using (3.19) and (3.17) in (5.24), we get

R
(1)
2m,2m+2 = R

(1)
2m+1,2m+3 = −1

2

√√√√g
(1)
2m+2

g
(1)
2m

(m + 1)(2m + 1), (5.26)

and

R
(1)
2m+1,2m+2 = 1

2

√√√√g
(1)
2m+2

g
(1)
2m

(m + 1)(2m + 1)(4m + 2a + 4). (5.27)

For m = N − 1, large N, we have
(
g

(1)
2N

/
g

(1)
2N−2

) � 1 and

P
(1)
2N−1,2N ∼ 2N2 + O(N), R

(1)
2N−1,2N+1 ∼ −N2 + O(N),

(5.28)
R

(1)
2N−1,2N ∼ 4N3 + O(N2), R

(1)
2N−2,2N ∼ −N2 + O(N).

Finally using (5.18), (5.19) and (5.21), defined in the θ interval [ε, π/2 − εN−1/2], and (5.28)
in the GCD formula (2.32), we get for

x = (4N + 2a + 2) cos2 θ, y = x + �x,

x(x − y)S
(1)
2N(x, y) = R

(1)
2N−2,2N

[
ψ

(1)
2N (x)ψ

(1)
2N−1(y) − ψ

(1)
2N (y)ψ

(1)
2N−1(x)

]
+ R

(1)
2N−1,2N+1

[
ψ

(1)
2N−2(x)ψ

(1)
2N+1(y) − ψ

(1)
2N−2(y)ψ

(1)
2N+1(x)

]
+
(
R

(1)
2N−1,2N − xP

(1)
2N−1,2N

)[
ψ

(1)
2N−2(x)ψ

(1)
2N (y) − ψ

(1)
2N−2(y)ψ

(1)
2N (x)

]
= N

2π sin2 θ
[sin(f2N−2(θ + �θ) − f2N(θ)) + sin(f2N(θ + �θ) − (f2N−2(θ)))]

−
[

N

2π sin2 θ tan 2θ

]
[cos(f2N−2(θ)) cos(f2N(θ + �θ))

− cos(f2N−2(θ + �θ)) cos(f2N(θ))]

= N cos 4θ

π sin2 θ
sin

(
�θ

∂f2N(θ)

∂θ

)
−
[

N sin 4θ

2π sin2 θ tan 2θ

]
sin

(
�θ

∂f2N(θ)

∂θ

)
.

(5.29)
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Here, we have neglected the oscillatory term of O(1) arising from the even function. Finally,
we get

(x − y)S
(1)
2N(x, y) = 1

π sin2 2θ
(cos 4θ − cos2 2θ)

[
sin

(
�θ

∂f2N(θ)

∂θ

)]
= 1

π
sin[8N sin2 θ�θ ]. (5.30)

Combining all, we get

S
(1)
2N(x, y) = sin(x−1/2

√
(4N − x)�x)

π�x
, 0 < x < 4N. (5.31)

With x → y, we get the level density

S
(1)
2N(x, x) = 1

π

√
4N − x

x
, 0 < x < 4N. (5.32)

With �x → 0, (i.e. in the bulk of the spectrum) and r = �xS
(1)
2N(x, x), we get the ‘universal’

sine-kernel (5.16).

6. Universality for symplectic ensembles

Before we prove universality of the eigenvalue correlation for symplectic ensembles, we would
clarify some of the confusing notations related to the corresponding SOP.

SOP corresponding to symplectic ensembles of random matrices can be defined in an
interval [x1, x2] as∫ x2

x1

gj
−1[π(4)

j (x)π
(4)
k

′
(x) − π

(4)
k (x)π

(4)
j

′
(x)

]
w(x) dx

=
∫ x2

x1

[
φ

(4)
j (x)ψ

(4)
k (x) − φ

(4)
k (x)ψ

(4)
j (x)

]
dx = Zj,k, (6.1)

where

φ
(4)
j (x) = (gj )

− 1
2 w(x)1/2π

(4)
j (x), ψ

(4)
j (x) = d

dx
φ

(4)
j (x). (6.2)

Here, π
(4)
j (x) are SOP defined with respect to w(x). This definition is used in [3, 4] and will

also be used in this paper to study the statistical properties of the symplectic ensembles.
An alternative definition is if we write

φ
(4)
j (x) = (gj )

− 1
2 w(x)π

(4)
j (x), ψ

(4)
j (x) = d

dx
φ

(4)
j (x), (6.3)

such that
1

2

∫ x2

x1

gj
−1[π(4)

j (x)π
(4)
k

′
(x) − π

(4)
k (x)π

(4)
j

′
(x)

]
w2(x) dx

= 1

2

∫ x2

x1

[
φ

(4)
j (x)ψ

(4)
k (x) − φ

(4)
k (x)ψ

(4)
j (x)

]
dx

=
∫ x2

x1

φ
(4)
j (x)ψ

(4)
k (x) dx

= Zj,k. (6.4)

Here φ
(4)
j (x1) = φ

(4)
j (x2) = 0. The SOP π

(4)
j (x) in this definition is defined with respect to

w2(x). This definition is used in [5, 6] and is used to prove duality between SOP corresponding
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to orthogonal and symplectic ensembles of random matrices. Also, this definition differs from
that of [3, 4, 28] for β = 4 by a factor 2, which is incorporated in the normalization constant.

We will use (6.1) and the GCD formula to prove universality. Here we would like to
mention that our GCD results are valid for both these definitions with some minor difference
in R

(4)
(x).

6.1. Jacobi SOP

We consider SOP (6.2) defined with respect to the Jacobi weight (2.6). As shown in [3, 4],
π

(4)
j (x) ≡ πj (x) and π ′

j (x) can be written compactly in terms of Jacobi OP P
a,b
j (x),

π ′
2m+1(x) = P

a,b
2m (x), m = 0, 1, . . . , (6.5)

π ′
2m(x) = P

a,b
2m−1(x) + η2mπ ′

2m−2(x), m = 1, 2, . . . , π ′
0(x) = 0, (6.6)

where η2m is a constant, given in equation (6.11). On integration, we find the polynomials

π2m+1(x) = 2

(2m + a + b)

[
D2m+1P

a,b
2m+1(x) + E2m+1P

a,b
2m (x) + F2m+1P

a,b
2m−1(x)

]
,

m = 0, 1, . . . , (6.7)

π2m(x) = 2

(2m + a + b − 1)

[
D2mP

a,b
2m (x) + E2mP

a,b
2m−1(x) + F2mP

a,b
2m−2(x)

]
+ η2mπ2m−2(x),

m = 0, 1, . . . . (6.8)

Here, P
a,b
j (x) = 0 for negative j . In (6.7) and (6.8) we have used the indefinite integral

1

2
(j + a + b)

∫
P

a,b
j (x) dx = P

a−1,b−1
j+1 (x),

= Dj+1P
a,b
j+1(x) + Ej+1P

a,b
j (x) + Fj+1P

a,b
j−1(x). (6.9)

The integration constants have been put equal to zero because of skew-orthogonality with
π1(x). The constants Dj,Ej , Fj , ηj and g

(4)
j are given by

Dj = (j + a + b)(j + a + b − 1)

(2j + a + b)(2j + a + b − 1)
, Ej = (a − b)(j + a + b − 1)

(2j + a + b)(2j + a + b − 2)
,

(6.10)

Fj = − (j + a − 1)(j + b − 1)

(2j + a + b − 1)(2j + a + b − 2)
, ηj = (j + a − 1)(j + b − 1)(2j + a + b − 5)

(j − 1)(j + a + b − 1)(2j + a + b − 1)
,

g
(4)
2m = g

(4)
2m+1 = 2h

a,b
2m

4m + a + b − 1
,

= 2a+b+2�(2m + a + 1)�(2m + b + 1)

(4m + a + b + 1)(4m + a + b − 1)�(2m + 1)�(2m + a + b + 1)
. (6.11)

For large j and large m,

Dj = −Fj = 1

4
+ O(j−1), Ej = (a − b)

[
1

4j
+ O(j−2)

]
, (6.12)

ηj = 1 + O(j−1), g
(4)
2m = 2a+b

4m2
+ O(m−3), (6.13)
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and in the same approximation,

π2m+1(x) = 1

4m

[
P

a,b
2m+1(x) − P

a,b
2m−1(x)

]
,

(6.14)
π2m(x) = 1

4m

[
P

a,b
2m (x) + 2(a+b)/2(wa,b(x))−1/2].

Here in (6.14), the non-polynomial term on the right-hand side is the large-m approximation
for the lower-order terms in the series in (6.8) and has been verified numerically.

For large m, we use (6.14) and the asymptotic formula for Jacobi OP (4.3) to obtain
asymptotic formula for Jacobi SOP. For a, b arbitrary and real, ε a fixed positive number, we
have for

x = cos θ, ε � θ � π − ε,
(6.15)(

g
(4)
2m

)−1/2√
wa,b(x)π2m+1(x) := φ

(4)
2m+1(x) = −

√
sin θ

πm
sin[f2m(θ)] + O(m− 3

2 ),

(
g

(4)
2m

)−1/2√
wa,b(x)π2m(x) := φ

(4)
2m(x) = 1

2

[
1√

πm sin θ
cos[f2m(θ)] + 1

]
+ O(m− 3

2 ), (6.16)

ψ
(4)
2m+1(x) = 2

√
m

π sin θ
cos[f2m(θ)] + O(m− 1

2 ), (6.17)

ψ
(4)
2m(x) =

√
m

π sin3 θ
[sin[f2m(θ)] + 1] + O(m− 1

2 ), (6.18)

where

f2m(θ) =
(

2m +
a + b + 1

2

)
θ −

(
a +

1

2

)
π

2
. (6.19)

Equation (6.17) is derived from (6.5) and (6.18) is obtained by differentiating (6.16).
Here, we would like to mention that to calculate level density and two-point correlation
function for the Jacobi symplectic ensemble, (6.17) and (6.18) are not needed. However, they
are important to define the SOP and hence included for completeness.

6.2. Level density and two-point correlation for Jacobi symplectic ensemble

In this subsection, we calculate the level density of Jacobi symplectic ensemble and show that in
the bulk of the spectrum, the scaled or ‘unfolded’ [28] kernel function

(
S

(4)
2N(x, y)

/
S

(4)
2N(y, y)

)
is stationary and universal.

As suggested in equation (2.31), to obtain the kernel function, we need to calculate
R

(4)
2N−1,2N+1, R

(4)
2N−1,2N,R

(4)
2N−2,2N and P

(4)
2N−1,2N . For this, we use (2.18),

(1 − x2)
d

dx
φ

(4)
2m+1(x) =

2m+2∑
j=2m−2

P
(4)
2m+1,j φ

(4)
j (x), (6.20)

to get P
(4)
2m+1,2m+2. It is given by

P
(4)
2m+1,2m+2 = −

√√√√g
(4)
2m+2

g
(4)
2m

(2m + a + b + 1)Q2m,2m+1Q2m+1,2m+2

2D2m+2
, (6.21)

where Qj,k and Dj are given in the table and (6.10) respectively.
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Similarly, we use (2.19),

x(1 − x2)
d

dx
φ

(4)
2m(x) =

2m+2∑
j=2m−2

R
(4)
2m,jφ

(4)
j (x),

(6.22)

x(1 − x2)
d

dx
φ

(4)
2m+1(x) =

2m+3∑
j=2m−2

R
(4)
2m+1,j φ

(4)
j (x),

to get R
(4)
2m,2m+2, R

(4)
2m+1,2m+3 and R

(4)
2m+1,2m+2. For large m, we get to the leading order

R
(4)
2m+1,2m+2 �

√√√√g
(4)
2m+2

g
(4)
2m

[
(2m + a + b + 1)E2m+3Q2m,2m+1Q2m+1,2m+2Q2m+2,2m+3

2D2m+3D2m+2

− (a − b)
(2m + a + b + 1)

2(2m + a + b)

D2m+1

D2m+2
Q2m+1,2m+2

]
+ (a − b)O(1/m) (6.23)

= 0 for a = b, (6.24)

R
(4)
2m+1,2m+3 � −

√√√√g
(4)
2m+2

g
(4)
2m

(2m + a + b + 2)Q2m,2m+1Q2m+1,2m+2Q2m+2,2m+3

2D2m+3
+ O(1), (6.25)

R
(4)
2m,2m+2 � −

√√√√g
(4)
2m+2

g
(4)
2m

(2m + a + b + 1)Q2m−1,2mQ2m,2m+1Q2m+1,2m+2

2D2m+2
+ O(1), (6.26)

where Qj,k,Dj and Ej are given in the table and (6.10) respectively.
For large j , we use Qj,j+1 � 1/2. Also for m = N−1, large N, we have

(
g

(4)
2N

/
g

(4)
2N−2

) � 1
and

P
(4)
2N−1,2N ∼ −N + O(1), R

(4)
2N−1,2N+1 ∼ −N

2
+ O(1),

(6.27)
R

(4)
2N−1,2N ∼ (b − a)

4
+ (b − a)O(N−1), R

(4)
2N−2,2N ∼ −N

2
+ O(1).

Finally using (6.15) and (6.16), defined in the θ interval [ε, π − ε], and (6.27) in the GCD
formula (2.31), we get for

y = cos θ, x = y + �y = cos(θ + �θ), y − x � �θ sin θ,

(y − x)(1 − y2)S
(4)
2N(x, y) = R

(4)
2N−2,2N

[
φ

(4)
2N(x)φ

(4)
2N−1(y) − φ

(4)
2N(y)φ

(4)
2N−1(x)

]
+ R

(4)
2N−1,2N+1

[
φ

(4)
2N−2(x)φ

(4)
2N+1(y) − φ

(4)
2N−2(y)φ

(4)
2N+1(x)

]
+
(
R

(4)
2N−1,2N − xP

(4)
2N−1,2N

)[
φ

(4)
2N−2(x)φ

(4)
2N(y) − φ

(4)
2N−2(y)φ

(4)
2N(x)

]
= 1

4π
[cos(f2N(θ + �θ)) sin(f2N−2(θ)) − cos(f2N(θ)) sin(f2N−2(θ + �θ))]

+
1

4π
[cos(f2N−2(θ + �θ)) sin(f2N(θ)) − cos(f2N−2(θ)) sin(f2N(θ + �θ))]

+
cos θ

4π sin θ
[cos(f2N−2(θ + �θ)) cos(f2N(θ))

− cos(f2N−2(θ)) cos(f2N(θ + �θ))]
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= 1

4π
[sin[f2N−2(θ) − (f2N(θ + �θ)] + sin[f2N(θ) − f2N−2(θ + �θ)]]

+
cos θ sin(2θ)

4π sin θ
[sin[�θf ′

2N(θ)]]

= − 1

4π

[
sin

[(
2N +

a + b + 1

2

)
�θ − 2θ

]
+ sin

[(
2N +

a + b + 1

2

)
�θ + 2θ

]]
+

cos θ sin(2θ)

4π sin θ

[
sin

[(
2N +

a + b + 1

2

)
�θ

]]
� − 1

2π
sin[2N�θ ][cos(2θ) − cos2 θ ], (6.28)

where in the second step, we have dropped O(N−1) terms. This gives us

S
(4)
2N(x, y) = sin(2N�θ)

2π�θ sin θ
,

= sin(2N(1 − y2)
−1/2

�y)

2π�y
, |y| < 1. (6.29)

With �y → 0, we get the level density

S
(4)
2N(y, y) = N

π
√

1 − y2
, |y| < 1. (6.30)

In the bulk of the spectrum, we get the ‘universal’ sine-kernel

S
(4)
2N(x, y)

S
(4)
2N(y, y)

= sin 2πr

2πr
, r = �yS

(4)
2N(y, y). (6.31)

6.3. Associated Laguerre SOP

Now we consider SOP (6.2) defined with respect to the associated Laguerre weight (2.7). As
shown in [3, 4], π

(4)
j (x) ≡ πj (x) and π ′

j (x) can be written compactly in terms of associated

Laguerre OP L
(a)
j (x),

π ′
2m+1(x) = L

(a)
2m(x), m = 0, 1, . . . , (6.32)

π ′
2m(x) = L

(a)
2m−1(x) +

(
2m + a − 1

2m − 1

)
π ′

2m−2(x), m = 1, 2, . . . , π ′
0(x) = 0. (6.33)

On integration, we find

π2m+1(x) = −L
(a)
2m+1(x) + L

(a)
2m(x), m = 0, 1, . . . , (6.34)

π2m(x) = −L
(a)
2m(x) + L

(a)
2m−1(x) +

(
2m + a − 1

2m − 1

)
π2m−2, m = 0, 1, . . . . (6.35)

For a = 0, (6.34) and (6.35) give back the results of [29], with the observation that any
multiple of π2m(x) can be added to π2m+1(x). The normalization constant is given by

g
(4)
2m = g

(4)
2m+1 = −h

(a)
2m. (6.36)

The results (6.34) and (6.35) derive from (6.32) and (6.33) from the indefinite integral,∫
Ł(a)

j (x) dx = −L
(a−1)
j+1 (x) = −L

(a)
j+1(x) + L

(a)
j (x),

the constants of integration in (6.34) and (6.35) being zero on skew-orthogonality with π1(x).
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To obtain asymptotic formula for associated Laguerre SOP, we use (6.34) and (6.35) and
the asymptotic formula for associated Laguerre OP (4.4) and (4.5). To avoid θ floating inside
the argument, for a given x, we choose θ which effectively corresponds to j = 2m + 1/2 in
(4.4). For ‘a’ arbitrary and real, ε a fixed positive number, we have for

x = (8m + 2a + 4) cos2 θ, ε � θ � π/2 − εm− 1
2 , θ ≡ θ2m+1/2,

(6.37)√
g

(4)
2mφ

(4)
2m(x) = − (2m)a/2

2

{[
1

2
√

πm cos θ sin3 θ
cos[f2m(θ)] + 1 +

O(1)

m
√

x

]}
,√

g
(4)
2mφ

(4)
2m+1(x) = (2m)a/2

√
mπ tan θ

[
sin[f2m(θ)] +

O(1)√
mx

]
, (6.38)

√
g

(4)
2mψ

(4)
2m(x) = (2m)a/2

[
1

8
√

πm cos3 θ sin θ
sin[f2m(θ)] +

O(1)

m
√

x

]
, (6.39)

√
g

(4)
2mψ

(4)
2m+1(x) = (2m)a/2

[
1

2

√
tan θ

mπ
cos[f2m(θ)] +

O(1)

m
√

x

]
, (6.40)

with√
g

(4)
2m±2φ

(4)
2m±2(x) = − (2m)a/2

2

{[
1

2
√

πm cos θ sin3 θ
cos[f2m(θ) ∓ 4θ ] + 1 +

O(1)

m
√

x

]}
.

(6.41)

Similar relations hold for (6.38)–(6.40) as m → m ± 1. Here

f2m(θ) = (2m + 1 + a/2)(sin 2θ − 2θ) +
3π

4
. (6.42)

In deriving (6.37) we have used the large-m approximation(
8m − x

2m

)
π2m(x) = −(

L
(a)
2m(x) + L

(a)
2m+1(x)

) − 1

2

(
8m − x

2m

)
(2m)a/2(wa(x))−1/2, (6.43)

which follows from the three-term recursion and a sum rule for L
(a)
j (x) [19].

6.4. Level-density and two-point correlation for associated Laguerre symplectic ensemble

In this subsection, we calculate the level density of associated Laguerre symplectic ensemble
and show that in the bulk of the spectrum, the scaled or ‘unfolded’ [28] kernel function(
S

(4)
2N(x, y)

/
S

(4)
2N(y, y)

)
is stationary and universal.

To study the kernel function (2.31), we need to calculate R
(4)
2N−1,2N+1, R

(4)
2N−1,2N,R

(4)
2N−2,2N

and P
(4)
2N−1,2N . For this, we use (2.18) and (2.19) for associated Laguerre weight,

x
d

dx
φ

(4)
2m+1(x) =

2m+2∑
j=2m−2

P
(4)
2m+1,j φ

(4)
j (x), (6.44)

x2 d

dx
φ

(4)
2m+1(x) =

2m+3∑
j=2m−2

R
(4)
2m+1,j φ

(4)
j (x), x2 d

dx
φ

(4)
2m(x) =

2m+2∑
j=2m−2

R
(4)
2m,jφ

(4)
j (x). (6.45)

From which, using properties of OP, we get

P
(4)
2m+1,2m+2 =

√√√√g
(4)
2m+2

g
(4)
2m

(m + 1), R
(4)
2m+1,2m+3 = −

√√√√g
(4)
2m+2

g
(4)
2m

(m + 1)(2m + 3), (6.46)
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R
(4)
2m,2m+2 = −

√√√√g
(4)
2m+2

g
(4)
2m

(m + 1)(2m + 1), R
(4)
2m+1,2m+2 =

√√√√g
(4)
2m+2

g
(4)
2m

(m + 1)(4m + a + 4).

(6.47)

For m = N − 1, large N, we have
(
g

(4)
2N

/
g

(4)
2N−2

) � 1. Finally for large N, the recursion
coefficients are given by

P
(4)
2N−1,2N ∼ N + O(1), R

(4)
2N−1,2N+1 ∼ −2N2 + O(N),

R
(4)
2N−2,2N ∼ −2N2 + O(N), R

(4)
2N−1,2N ∼ 4N2 + O(N).

(6.48)

Also, since g
(4)
2N−2

/
g

(4)
2N � 1, we can write

φ
(4)
2N(x)φ

(4)
2N−1(y) = 1√

g
(4)
2N−2g

(4)
2N

√
w(x)w(y)π2N(x)π2N−1(y)

� 1

g
(4)
2N

√
w(x)w(y)π2N(x)π2N−1(y)

= − 1

ha
2N

√
w(x)w(y)π2N(x)π2N−1(y)

� −(2N)−a
√

w(x)w(y)π2N(x)π2N−1(y). (6.49)

Finally using the asymptotic results (6.37), (6.38), (6.41), defined in the θ interval
[ε, π/2 − εN− 1

2 ], and the large m results (6.48) and (6.49) in the GCD formula (2.31),
we get for

y = (8N + 2a + 4) cos2 θ, x = y + �y,

y(y − x)S
(4)
2N(x, y) = R

(4)
2N−2,2N

[
φ

(4)
2N(x)φ

(4)
2N−1(y) − φ

(4)
2N(y)φ

(4)
2N−1(x)

]
+ R

(4)
2N−1,2N+1

[
φ

(4)
2N−2(x)φ

(4)
2N+1(y) − φ

(4)
2N−2(y)φ

(4)
2N+1(x)

]
+
(
R

(4)
2N−1,2N − xP

(4)
2N−1,2N

)[
φ

(4)
2N−2(x)φ

(4)
2N(y) − φ

(4)
2N−2(y)φ

(4)
2N(x)

]
= − N

2π sin2 θ
{sin[f2N−2(θ) − f2N(θ + �θ)] + sin[f2N(θ) − f2N−2(θ + �θ)]}

+
N cos 2θ

4π cos θ sin3 θ
{cos[f2N−2(θ + �θ)] cos[(f2N(θ)]

− cos[f2N−2(θ)] cos[f2N(θ + �θ)]]}
=

[
N cos 4θ

π sin2 θ
− N sin 4θ cos 2θ

4π cos θ sin3 θ

]
sin

(
∂f2N

∂θ
�θ

)
= 8N cos2 θ

[cos 4θ − cos2 2θ ]

2π sin2 2θ
sin

(
∂f2N

∂θ
�θ

)
, (6.50)

which gives

�yS
(4)
2N(x, y) = − sin(8N sin2 θ�θ)

2π
.

Thus we get

S
(4)
2N(x, y) = sin

(
1
2y− 1

2
√

8N − y�y
)

2π�y
, 0 < y < 8N. (6.51)
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With �y → 0, we get the level density

S
(4)
2N(y, y) = 1

4π

√
8N − y

y
, 0 < y < 8N. (6.52)

Finally, in the bulk of the spectrum, we get the ‘universal’ sine-kernel (6.31).

7. Conclusion

In [3, 4], the authors prove ‘universality’ for the entire Jacobi ensembles of random matrices
using SOP, which were written in terms of OP. The asymptotic properties of OP were used
to obtain asymptotic formulae for SOP. Finally, the summation in S

(β)

2N (x, y) was replaced by
an integral for large N. However, using asymptotic results of the SOP to calculate the kernel
function, before completing the sum lacks mathematical rigor.

In this paper, we have shown that SOP 

(β)
n (x) and 	

(β)
n (x) corresponding to classical

weight satisfy three-term recursion relations in the 2 × 2 quaternion space. Using this, we
obtain the kernel functions S

(β)

2N (x, y), β = 1, 4, for the entire family of finite-dimensional
Jacobi ensembles of random 2N × 2N matrices. As N → ∞, we use the asymptotic results
of the SOP in the range [x1 + ε, x2 − ε], over which they are defined, to prove that in the bulk
of the spectrum, the correlation functions are universal.

Here, we would like to mention that our GCD results are valid in the entire complex
plane. Hence to study statistical properties of the eigenvalues of orthogonal and symplectic
ensembles away from the bulk, we need to use Plancherel–Rotach-type formula for these
polynomials defined outside the range [x1 +ε, x2 −ε], something which has already been done
for the unitary ensembles. We wish to come back to this in a later publication.

We would like to emphasize that the key step in deriving the asymptotic results of SOP
is to obtain and solve finite-term recursion relations between SOP and OP. Recently, this
technique has been used to obtain bulk asymptotics of SOP corresponding to quartic double
well potential [7]. Till date, this seems the easier method to study the asymptotic behavior of
SOP rather than solving the 2d × 2d Riemann–Hilbert problem [6, 45].

Finally, a word on duality. Results in section 3 makes us wonder if the two families
of SOP are really different or there exists a simple mapping between them. We have seen
the existence of a simple relation (3.14) between SOP arising in the study of the associated
Laguerre ensembles. The other ensembles do show a similar pattern, although we are unable
to come out with a general formula. A deeper theoretical understanding is needed to obtain
the mapping between these two families of SOP.
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